Know Thy Complexities

Know Thy Complexities!

Hi there!  This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science.  When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn’t be stumped when asked about them.  Over the last few years, I’ve interviewed at several Silicon Valley startups, and also some bigger companies, like Google, Facebook, Yahoo, LinkedIn, and eBay, and each time that I prepared for an interview, I thought to myself “Why hasn’t someone created a nice Big-O cheat sheet?”.  So, to save all of you fine folks a ton of time, I went ahead and created one.  Enjoy!

Common Data Structure Operations

Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
Array Θ(1) Θ(n) Θ(n) Θ(n) O(1) O(n) O(n) O(n) O(n)
Stack Θ(n) Θ(n) Θ(1) Θ(1) O(n) O(n) O(1) O(1) O(n)
Queue Θ(n) Θ(n) Θ(1) Θ(1) O(n) O(n) O(1) O(1) O(n)
Singly-Linked List Θ(n) Θ(n) Θ(1) Θ(1) O(n) O(n) O(1) O(1) O(n)
Doubly-Linked List Θ(n) Θ(n) Θ(1) Θ(1) O(n) O(n) O(1) O(1) O(n)
Skip List Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(n) O(n) O(n) O(n) O(n log(n))
Hash Table N/A Θ(1) Θ(1) Θ(1) N/A O(n) O(n) O(n) O(n)
Binary Search Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(n) O(n) O(n) O(n) O(n)
Cartesian Tree N/A Θ(log(n)) Θ(log(n)) Θ(log(n)) N/A O(n) O(n) O(n) O(n)
B-Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Red-Black Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
Splay Tree N/A Θ(log(n)) Θ(log(n)) Θ(log(n)) N/A O(log(n)) O(log(n)) O(log(n)) O(n)
AVL Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)
KD Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n)) O(n) O(n) O(n) O(n) O(n)

Array Sorting Algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst
Quicksort Ω(n log(n)) Θ(n log(n)) O(n^2) O(log(n))
Mergesort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(n)
Timsort Ω(n) Θ(n log(n)) O(n log(n)) O(n)
Heapsort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(1)
Bubble Sort Ω(n) Θ(n^2) O(n^2) O(1)
Insertion Sort Ω(n) Θ(n^2) O(n^2) O(1)
Selection Sort Ω(n^2) Θ(n^2) O(n^2) O(1)
Tree Sort Ω(n log(n)) Θ(n log(n)) O(n^2) O(n)
Shell Sort Ω(n log(n)) Θ(n(log(n))^2) O(n(log(n))^2) O(1)
Bucket Sort Ω(n+k) Θ(n+k) O(n^2) O(n)
Radix Sort Ω(nk) Θ(nk) O(nk) O(n+k)
Counting Sort Ω(n+k) Θ(n+k) O(n+k) O(k)
Cubesort Ω(n) Θ(n log(n)) O(n log(n)) O(n)

Given a list L of numbers from 0 to n, and another number k = [0-9], find how many times k appears in L. If the target number in L is more than one digit, treat each digit separately. For example, k=0 appears twice in L = [0,10].

Given a list L of numbers from 0 to n, and another number k = [0-9], find how many times k appears in L. If the target number in L is more than one digit, treat each digit separately. For example, k=0 appears twice in L = [0,10].

Java Solution:

Output:
Total count is 3

Word Break Problem using Backtracking

Given a valid sentence without any spaces between the words and a dictionary of valid English words, find all possible ways to break the sentence in individual dictionary words.

Example

(more…)